
The Encoding Complexity for Network 

Coding with 2 Simple  Multicast Sessions

Kai Cai

Institute of Computing Technology, 

Chinese Academy of Sciences

Joint work with Wentu Song, Ronguan Feng, 

Peking University



Outline

 Introduction 

 The Method --- Region Decomposition

 Time Complexity

 Encoding Links

 Encoding Field



Introduction



 2 Simple Multicast Sessions

 A finite, directed, acyclic graph (V, E).

 Links: unit capacity, delay free, error free.

 Two source nodes each generate a unit rate message.

 Each message is demanded by a set of sinks,  source≠sink.

 The message is regarded as random variable taken values from 

some finite field F, i.e., the encoding field. 



 A 2 simple multicast network with 4 sinks.

 Source nodes s1 s2  generate x1 x2, respectively.

 x1 and x2 are demand by t1,1t1,2 and t2,1t2,2 respectively.

 We add an imaginary link to each source node (say xi source

 link) and an imaginary link to each sink node (say xi sink link), i=1,2. 



 Our Problems

 Does a linear solution exist?    

 What is the time complexity to obtain a solution?

 How many encoding links is sufficient to obtain a solution?

 What is the required size of the finite field for a solution?
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 Known Results

 The solvability can be determined in polynomial time. 

 A solution can be obtained in polynomial time.

 The order of the time complexity; the number of encoding links; the

required field size (Not yet)

C.-C. Wang and N. B. Shroff, ``Pairwise Intersession Network Coding on Directed Networks,'' IEEE Trans. Inf. Theory, 

vol. 56, no. 8, pp. 3879-3900, Aug. 2010.

S. Fortune, J. Hopcroft, and J. Willie, ``The directed subgraph homeomorphism problem,'' Theoretical Computer 

Science, vol. 10. pp. 111-121, 1980.



 Our Results

 The solvability can be determined with time O(|E|). 

 A solution can be obtained with time O(|E|).

 max{3, 2N-2} encoding links is sufficient to achieve a 

solution.

 A finite field with size                                      is sufficient

to achieve a solution.

Here, |E| is the number of links and N is the number of sinks 

of the underlying network.



The method 

Region Decomposition

It is a promotion of  the subtree decomposition method for multicast networks:  C. Fragouli and E. Soljanin,  

“Information flow decomposition for network coding,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 829-848, Mar. 2006



 A region is a  collection of links, namely R such that except one 
of them (called the head of R), each has an incoming link in R. 

 A region decomposition is a partition of  the link set of mutually 
disjoint regions D={R1, R2, …, Rk}.

 A region graph RG(D) with respect to D is a graph with node set 
D={R1, R2, …Rk} and two regions is adjacent if  a link in one region 
is adjacent to the head of the other region.

 Region Decomposition and Region Graph



 Examples

 Remarks

 The line graph L(G) is a (trivial) region graph.

 All the region graphs can be constructed from L(G) by combining adjacent regions 
again and again.



 Codes on the Region Graph

Basic idea: assign a same global encoding kernel to the links in the 
same region.

 A code on a region graph RG(D) is a  collection of  2-dimensional

vectors assigned to D={R1, R2, …Rk} such that:

(1) If R contains an X1 (source or sink) link, then assign (1,0).

If R contains an X2 (source or sink) link, then assign (0,1).

(2) for each non-source region R,  the vector assigned to R is a

linear combination of the vectors of its parents.

If a code exists, we call the region graph feasible.



 Remarks

 G is solvable if and only if L(G) is feasible.

 G is solvable if and only if it has a feasible region graph.

 Suppose RG(D) is feasible, the following operations do not change 

the feasibility of RG(D):

(1) If R has a single parent P, then combine R with P.

(2) If two adjacent regions P and R are assigned with same vectors, 

then combine P and R.



 Region labeling

 If R contains an X1 (source or sink) link, then label x1.

 If R contains an X2 (source or sink) link, then label x2

 If all the parents of R are all labeled with xi are labeled R

with xi , for i=1,2. 

 Notations

 xi region:                R is labeled with xi , for i=1,2.

 coding region:        R is labeled neither x1 nor x2.

 singular region:      R is labeled both x1 and x2.
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No singular region but infeasible!

Obviously, If D is feasible then D has no singular region, but the 

other direction is not true in general.



 Result:

 Suppose D has no singular region. If  each non-source 
region of D has at least two parents, then D is feasible.

 Proof.

If D satisfied the condition, then we can decentralized assign the global 

encoding kernels, i.e., assign mutually linear independent vectors {(1,0), 

(0,1), (1, a1), (1, a2), …(1, a|F|-1)} respectively to the X1 regions, X2 regions 

and all the coding regions of D. Here,  F={0,1=a1, a2 , …, a|F|-1} is the 

encoding field.



The Time Complexity



 Basic Region Decomposition

 A region decomposition D** satisfies:

(1) Each non-source region has at least two parents; 

(2) Except the head, all the incoming links of a link are within

the same region.

 Remarks:

 (a)  G has a unique basic region decomposition.

 (b)  D** can be obtained with time O(|E|). 





 An Example



 Main Results: 

 G is solvable if and only if D** has no singular region. 

 The solvability of G can be determined with time O(|E|);

 A linear solution of G can be obtained with time O(|E|).   
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How to determine the solvability and/or achieve a (linear) solution?



The Encoding Links



 Minimal Feasible Region Graph

 A minimal feasible region graph RG(D) satisfies:

(1) Contraction of any adjacent regions results in infeasible;

(2) Deleting any link of RG(D) results in infeasible. 

 Remarks:

 (a)  A minimal feasible region graph can be obtained from any

feasible region graph by region contraction and edge deletion

again and again till (1) (2).

 (b)  A minimal feasible region graph has the smallest number of

encoding links and also needs the smallest encoding fields.



 An Example



 Results on MFRG

 1.1 Each non-source region has exactly 2 parents. (If one parent, then it can be combined 

with his parent ; If more than two parents , then we can delete links, noticing that dim=2. )

 1.2 Two regions which are adjacent or having a common child can not be both x1 regions or 

x2 regions. (If two x1 region are adjacent, then we can combine them; If they have a common child, 

then we can delete 1 link.)

 1.3 Two adjacent coding regions has a common child. (If no common child, then we can 

combine the two coding regions,  noticing that 1.1 and decentralized assignment of vectors.)

 1.4 If a coding region R is adjacent to an x1(or x2) region, then R has a common child with 

some other  x1(or x2) region P. (otherwise, R have no common child with any x1(or x2) region, then 

we can combine R with the x1(or x2) region.)



 Results on MFRG

 2.1 An xi region is either an xi source or xi sink region, i=1,2. (by 1.2)

 2.2 A coding region has at least two children of sink regions. (by 1.1. For an xi parent, by 1.4, 
we can finally construct one; For a coding parent, by 1.3, we can finally construct one.)

 2.3 If R is a coding region having no child of coding region, then R has two children of x1 and 
x2 region such that the xi region has an xj parent, i≠j. (by 2.2, we find an xi child first, then by 1.4, 
R has a common child Q with some xi region, by the assumption, Q is an xj child (i≠j). Consider xj,

again by 1.4, we have an xi child which has an xj parent.)



 Main Result and the Idea 

 If the number of sinks N≥3, then 2N-2 encoding links is sufficient to 

achieve a network coding solution.         For a MFRG with N≥3, the 

number of the coding regions n≤ N-2.

 Note that In a MFRG, a link is an encoding link if and only if 

it is the head of a coding region or a sink region.

 Estimation of the number of the coding regions.





 Main Idea of the Proof

 Estimate    : the number of edges between a coding region to a sink 

region.

 Suppose P and Q are coding regions with biggest indexes. Two cases:

(1) Q is a child of P;

(2) P and Q are not adjacent.

J

Case (1):                 (by 1.1, 2.3) ;                (by 2.2,1.3).

Case (2):                  (by 2.3) ;             (by 2.2).

Combine the two inequalities, respectively, we have                      .
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The Field Size



 Basic idea

 For a finite field F with size q, there exist q+1 mutually       

linearly independent vectors {(1,0), (0,1), (1, a1), (1, a2)  ,…,        

(1, a|F|-1)} in     . 

 Assign (0,1), (1,0)  to X1 regions and X2 regions respectively 

and two linear independent vectors to two coding regions which      

have a common child. 

2F



 Associate graph

 Suppose the MFRG has n coding regions Q1, Q2,…Qn.  The 

associate graph has n+2 vertexs X1, X2 ,Q1, Q2,…,Qn. and the 

following three kind of edges: 

(X1, X2 );

(Qi, Qj) if Qi, Qj has a common child;

(Xi, Qj)  if Xi, Qj has a common child.

 Estimate the chromatic number k of the associate graph (a 

field with size k-1 is sufficient to achieve a solution).  



 Lemmas 
 Lemma 1: The X1 source region the X2 source region has a common child. 

(consider the first coding region, by 1.1)

 Lemma 2: Every vertex of the Associate Graph has degree at least 2.

 Lemma 3: Every k-chromatic graph has at least k vertices of  degree at least k-1. 

 Proof of Lemma 2
 X1 region have a common child with X2 region and also with the maximal coding region (by 2.3).

 X2 region have a common child with X1 region and also with the  maximal coding region.

 Coding region R have no coding child.  Then (R, X1) and (R, X2) (by 2.3).

 Coding region R have a coding child Q. Then (P, Q) (by 1.3) and  some (P, Xi) (by 2.2, 1.4).



 Main Idea of the Proof

 Estimate    : the number of edges of the associate graph.

(By Lemmas 2, 3)

(By 1.1)
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Combine the two inequalities, we obtain                           .2/34/72  Nk

nNJ 



Thanks ! and Questions?


