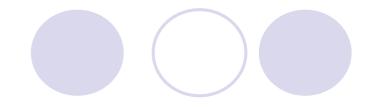
The Encoding Complexity for Network Coding with 2 Simple Multicast Sessions

Kai Cai Institute of Computing Technology, Chinese Academy of Sciences

Joint work with Wentu Song, Ronguan Feng, Peking University

Outline



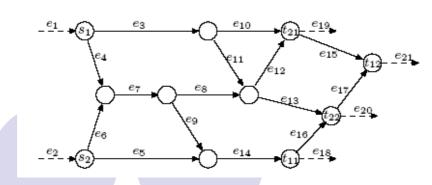
- Introduction
- The Method --- Region Decomposition
- Time Complexity
- Encoding Links
- Encoding Field

Introduction

- 2 Simple Multicast Sessions
 - A finite, directed, acyclic graph (V, E).
- Links: unit capacity, delay free, error free.
- Two source nodes each generate a unit rate message.
- Each message is demanded by a set of sinks, source≠sink.

✓ The message is regarded as random variable taken values from some finite field F, i.e., the encoding field.

• A 2 simple multicast network with 4 sinks.

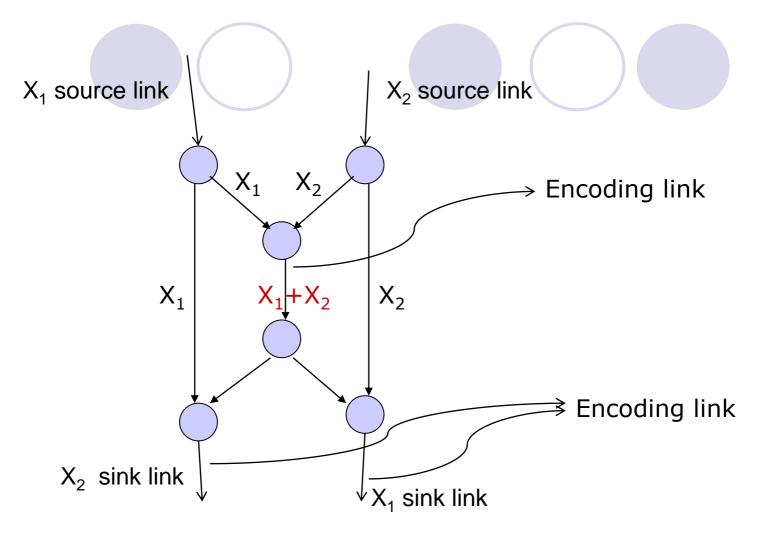


Source nodes $s_1 s_2$ generate $x_1 x_2$, respectively.

- x_1 and x_2 are demand by $t_{1,1}t_{1,2}$ and $t_{2,1}t_{2,2}$ respectively.
- We add an imaginary link to each source node (say x_i source
- Iink) and an imaginary link to each sink node (say x_i sink link), i=1,2.

Our Problems

- Does a linear solution exist?
- What is the time complexity to obtain a solution?
- How many encoding links is sufficient to obtain a solution?
- What is the required size of the finite field for a solution?



Known Results

The solvability can be determined in polynomial time.

A solution can be obtained in polynomial time.

The order of the time complexity; the number of encoding links; the required field size (Not yet)

C.-C. Wang and N. B. Shroff, ``Pairwise Intersession Network Coding on Directed Networks," IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 3879-3900, Aug. 2010.

S. Fortune, J. Hopcroft, and J. Willie, ``The directed subgraph homeomorphism problem," Theoretical Computer Science, vol. 10. pp. 111-121, 1980.

Our Results

- The solvability can be determined with time O(|E|).
- A solution can be obtained with time O(|E|).
 - max{3, 2N-2} encoding links is sufficient to achieve a solution.

• A finite field with size $\max\{2, \lfloor \sqrt{2N - 7/4} + 1/2 \rfloor\}$ is sufficient to achieve a solution.

Here, |E| is the number of links and N is the number of sinks of the underlying network.

The method Region Decomposition

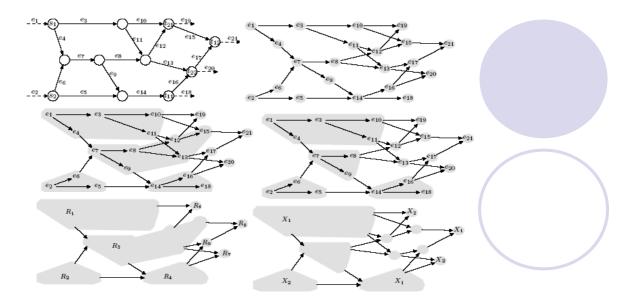
It is a promotion of the subtree decomposition method for multicast networks: C. Fragouli and E. Soljanin, "Information flow decomposition for network coding," IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 829-848, Mar. 2006

Region Decomposition and Region Graph

A region is a collection of links, namely R such that except one of them (called the head of R), each has an incoming link in R.

A region decomposition is a partition of the link set of mutually disjoint regions $D=\{R_1, R_2, ..., R_k\}$.

A region graph RG(D) with respect to D is a graph with node set $D=\{R_1, R_2, ..., R_k\}$ and two regions is adjacent if a link in one region is adjacent to the head of the other region.



Remarks

 \checkmark The line graph L(G) is a (trivial) region graph.

 \checkmark All the region graphs can be constructed from L(G) by combining adjacent regions again and again.

Codes on the Region Graph

- A code on a region graph RG(D) is a collection of 2-dimensional vectors assigned to $D=\{R_1, R_2, ..., R_k\}$ such that:
 - (1) If R contains an X_1 (source or sink) link, then assign (1,0). If R contains an X_2 (source or sink) link, then assign (0,1).
 - (2) for each non-source region R, the vector assigned to R is a linear combination of the vectors of its parents.
 - If a code exists, we call the region graph feasible.
 - Basic idea: assign a same global encoding kernel to the links in the same region.

Remarks

G is solvable if and only if L(G) is feasible.

G is solvable if and only if it has a feasible region graph.

Suppose RG(D) is feasible, the following operations do not change the feasibility of RG(D):

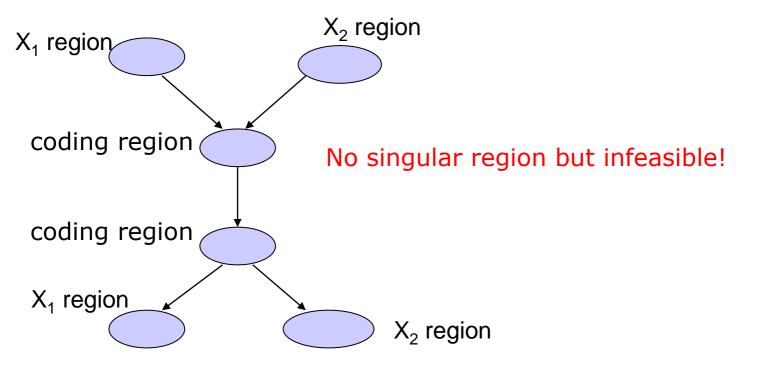
(1) If R has a single parent P, then combine R with P.(2) If two adjacent regions P and R are assigned with same vectors, then combine P and R.

Region labeling

If R contains an X₁ (source or sink) link, then label x₁.
If R contains an X₂ (source or sink) link, then label x₂
If all the parents of R are all labeled with x_i are labeled R with x_i, for i=1,2.

- Notations
- x_i region:
 coding region:
 singular region:

R is labeled with x_i , for i=1,2. R is labeled neither x_1 nor x_2 . R is labeled both x_1 and x_2 . Obviously, If D is feasible then D has no singular region, but the other direction is not true in general.



Result:

Suppose D has no singular region. If each non-source region of D has at least two parents, then D is feasible.

Proof.

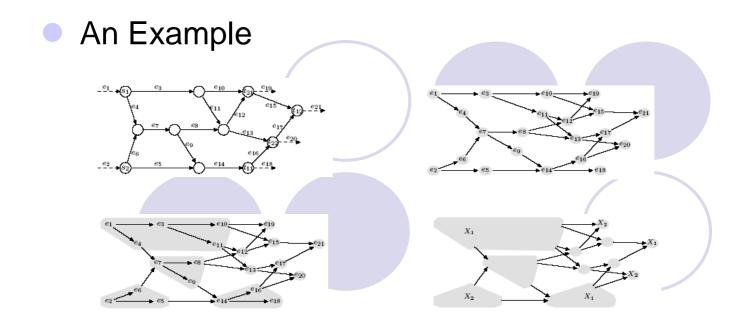
If D satisfied the condition, then we can decentralized assign the global encoding kernels, i.e., assign mutually linear independent vectors {(1,0), (0,1), (1, a_1), (1, a_2), ...(1, $a_{|F|-1}$)} respectively to the X₁ regions, X₂ regions and all the coding regions of D. Here, F={0,1= $a_1, a_2, ..., a_{|F|-1}$ } is the encoding field.

The Time Complexity

- Basic Region Decomposition
- A region decomposition D** satisfies:

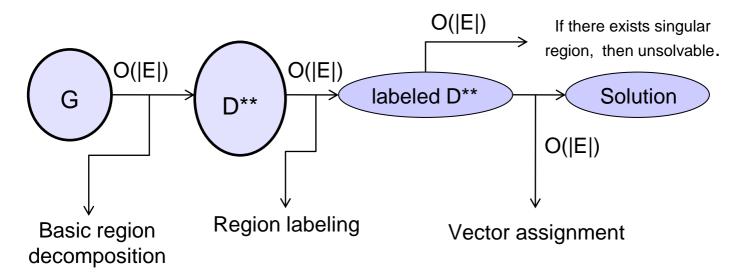
(1) Each non-source region has at least two parents;(2) Except the head, all the incoming links of a link are within the same region.

- Remarks:
- (a) G has a unique basic region decomposition.
- \checkmark (b) D^{**} can be obtained with time O(|E|).



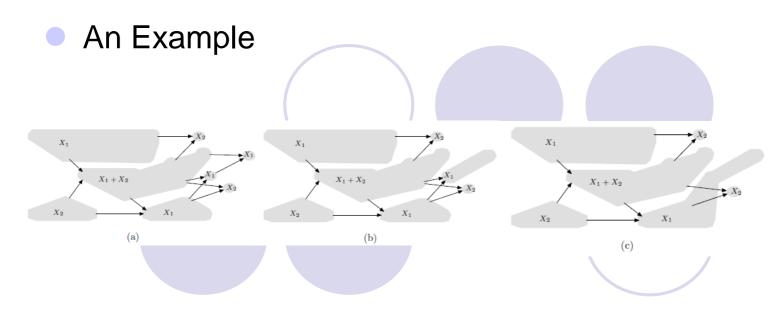
- G is solvable if and only if D** has no singular region.
- The solvability of G can be determined with time O(|E|);
 A linear solution of G can be obtained with time O(|E|).

How to determine the solvability and/or achieve a (linear) solution?



The Encoding Links

- Minimal Feasible Region Graph
- A minimal feasible region graph RG(D) satisfies:
 - (1) Contraction of any adjacent regions results in infeasible;(2) Deleting any link of RG(D) results in infeasible.
- Remarks:
- (a) A minimal feasible region graph can be obtained from any feasible region graph by region contraction and edge deletion again and again till (1) (2).
- (b) A minimal feasible region graph has the smallest number of encoding links and also needs the smallest encoding fields.



Results on MFRG

1.1 Each non-source region has exactly 2 parents. (<u>If one parent, then it can be combined</u> with his parent ; If more than two parents , then we can delete links, noticing that dim=2.)

1.2 Two regions which are adjacent or having a common child can not be both x_1 regions or x_2 regions. (If two x_1 region are adjacent, then we can combine them; If they have a common child, then we can delete 1 link.)

1.3 Two adjacent coding regions has a common child. (<u>If no common child, then we can</u> combine the two coding regions, noticing that 1.1 and decentralized assignment of vectors.)

✓ 1.4 If a coding region R is adjacent to an x_1 (or x_2) region, then R has a common child with some other x_1 (or x_2) region P. (<u>otherwise</u>, R have no common child with any x_1 (or x_2) region, then we can combine R with the x_1 (or x_2) region.)

Results on MFRG

2.1 An x_i region is either an x_i source or x_i sink region, i=1,2. (by 1.2)

2.2 A coding region has at least two children of sink regions. (by 1.1. For an x_i parent, by 1.4, we can finally construct one; For a coding parent, by 1.3, we can finally construct one.)

2.3 If R is a coding region having no child of coding region, then R has two children of x_1 and x_2 region such that the x_i region has an x_j parent, $i \neq j$. (by 2.2, we find an x_i child first, then by 1.4, R has a common child Q with some x_i region, by the assumption, Q is an x_j child ($i \neq j$). Consider x_j again by 1.4, we have an x_i child which has an x_i parent.)

Main Result and the Idea

If the number of sinks N≥3, then 2N-2 encoding links is sufficient to achieve a network coding solution. \iff For a MFRG with N≥3, the number of the coding regions n≤ N-2.

Note that In a MFRG, a link is an encoding link if and only if it is the head of a coding region or a sink region.

Estimation of the number of the coding regions.

Main Idea of the Proof

Estimate J: the number of edges between a coding region to a sink region.

Suppose P and Q are coding regions with *biggest* indexes. Two cases:

(1) Q is a child of P;

(2) P and Q are not adjacent.

Case (1): $J \le 2N - 2$ (by 1.1, 2.3); $J \ge 2n + 1$ (by 2.2, 1.3). Case (2): $J \le 2N - 4$ (by 2.3); $J \ge 2n$ (by 2.2).

Combine the two inequalities, respectively, we have $n \le N-2$.

The Field Size

Basic idea

For a finite field F with size q, there exist q+1 mutually linearly independent vectors {(1,0), (0,1), (1, a_1), (1, a_2),..., (1, $a_{|F|-1}$)} in F^2 .

Assign (0,1), (1,0) to X_1 regions and X_2 regions respectively and two linear independent vectors to two coding regions which have a common child.

Associate graph

Suppose the MFRG has n coding regions $Q_{1,}Q_{2,}...Q_{n}$. The associate graph has n+2 vertexs $X_{1,}X_{2,}Q_{1,}Q_{2,}...,Q_{n}$ and the following three kind of edges:

(X₁, X₂);
(Q_i, Q_j) if Q_i, Q_j has a common child;
(X_i, Q_j) if X_i, Q_j has a common child.

Estimate the chromatic number k of the associate graph (a field with size k-1 is sufficient to achieve a solution).

Lemmas

- Lemma 1: The X₁ source region the X₂ source region has a common child. (consider the first coding region, by 1.1)
- Lemma 2: Every vertex of the Associate Graph has degree at least 2.
- Lemma 3: Every k-chromatic graph has at least k vertices of degree at least k-1.

Proof of Lemma 2

- X_1 region have a common child with X_2 region and also with the maximal coding region (by 2.3).
- X_2 region have a common child with X_1 region and also with the maximal coding region.
- Coding region R have no coding child. Then (R, X_1) and (R, X_2) (by 2.3).
- Coding region R have a coding child Q. Then (P, Q) (by 1.3) and some (P, X_i) (by 2.2, 1.4).

Main Idea of the Proof

Estimate J: the number of edges of the associate graph.

$$J \ge \frac{[k(k-1)+2(n+2-k)]}{2}$$
 (By Lemmas 2, 3)
 $J \le N+n$ (By 1.1)

Combine the two inequalities, we obtain $k \le \sqrt{2N - 7/4} + 3/2$.

Thanks ! and Questions?